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1 . Introduction 
This paper presents the results of an investigation into 

the application of the Monte Carlo integration technique in 

the evaluation of multivariate normal (1.IIVN) integrals, Speci- 

fically the theory and resultant computer program is developed 

to evaluate MM integrals for the following situations: 

1) Over rectangular areas for dimension M < 5 - 
utilizing completely arbitrary input parameters 

(mean vector and variance-covariance matrix) and 

2) Over elliptical regions for arbitrary bivariate 

normal densities. 

Section 2 presents pertinent results on the MVN distribu- 

tion and describes the Monte Carlo technique in general appli- 

cations. Section 3 presents the theory pertinent to our particu- 

lar applications and section 4 discusses specific applications. 

The appendix presents the computer program and discusses the 

preparation of input cards. 

2. General Theory 

The Monte Carlo technique is, in general, a random simula- 

tion of a deterministic process, In integral evaluation one 

numerically evaluates a quantity whose expected value is the 

value of the integral and we can apply those statistical tech- 



niques applicable to such proceduresI 

The general principles of Monte Carlo procedures are well 

documented. The texts by Shreider (1964) and Newman and Well 

(1971) provide excellent discussions on the Monte Carlo tech- 

nique of integration, 

I As a simple, and inefficient, example consider the integral 
I 

1 
9 = I x dx. 

0 

The graph of x,O < x < 1, is in the unit square making 8 

the probability that a point, selected at random f r o m  the unit 

square, lies below the line f (x) = x. Thus if we select N 

\ - - 

pairs of uniform random numbers, say, (ui,vi)# i = 1, N, and 

if K is the number of points where vi < u then the ratio i' 
K/N estimates 8, This is the "shotgun" or "hit-or-miss" 

technique and it is the most efficient, Another famous example 

is the estimation of A in the Buffon Needle Problem. Let 

the notation x denote an arbitrary vector of length m and 

f ( x )  a real valued function of x, We will use the notation 

- 
- 

r rm r m  

. . ,dx  to replace the lengthy -..dxldx2,..dxm. - 

Suppose we desire to evaluate the integral 

where g ( 5 )  denotes a probability density function on The 

integral (1) is then merely the expected value of the function 

f(f) and can be estimated by evaluating the quantity 

N 
e t -  c f(x.1 n 

N i.=l -1 
2 



where ~c, i=1, I?, are samples f r o m  t h e  pdf g(x) . W e  d i r e c t l y  - 
have 

which is  estimated by the quant i ty  

. 
giving an estimated standard e r r o r  of = S/ffi.  This quant i ty  

can be used to put  confidence i n t e r v a l s  on 0 by the standard 

method. 
\ 

One useful  w a y  t o  reduce the magnitude of V a r ( G )  and, 

consequently, s2 is  to  "remove the regular  par t" ,  Suppose 

there e x i s t s  a function h(x)  on Rm that  approximates f (E) 

w e l l  on 
- 

and fu r the r  suppose that the value 

is known. We then have 

r 

and if V a r ( h ( ~ )  ) < 2 Cov(f , h(x) ) w e  have immediately the - 
result t h a t  

The MVN d i s t r i b u t i o n  is w e l l  documented and this discussion 

is merely t o  introduce notation and present  r e s u l t s  t o  be used 

in s e c t i o n  3. 3 



The MVN densi ty  is t h e  expression 

where p i s  the vec tor  of means and C is  t h e  pos i t i ve  d e f i n i t e ,  

symmetric variance-covariance matrix, 

always e x i s t s  a lower t r i angu la r  matrix A such t h a t  C = AA’, 

- 
For such matrices t h e r e  

Immediately w e  have I C 1  = IAlIA’] = /A’I 2 giving lei ‘I2 = /A’/ 

and, as A’ is  upper t r iangular ,  IA’I is  the product of t h e  

diagonal elements of A. If w e  def ine  a l i n e a r  transformation 

T h i s  r e s u l t  y i e l d s  the  equivalent pdf 

Thus by a s u i t a b l e  l i n e a r  transformation any MVN pdf can be re- 

duced t o  the product of independent standard normal var i a t e s ,  

These r e s u l t s  are u t i l i z e d  i n  our computer program, 

3. Specific Results 

This sec t ion  is  divided i n t o  t w o  parts:  the first dea l ing  

with t h e  algorithm f o r  in tegra t ion  over rectangular regions and 

t h e  second deal ing w i t h  in tegra t ion  over e l l i p t i c a l  areas i n  t h e  

b i v a r i a t e  case. 

4 
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3.1 In tegra t ion  Over Factangular Areas 

Suppose w e  d e s i r e  t o  evaluate t h e  i n t e g r a l  

. 
m 

Referring t o  formula (1) w e  def ine  g ( 5 )  = 1/ TI (bi-ai) and 
i=l 

evaluate  the i n t e g r a l  

and observe t h a t  w e  have 

and t h e  estimate 

m 

i=l 
6 = (bi-ai), 

w h e r e  

when zi is a randomvector f r o m  the pdf 

f 1  
; a < xi: bit i=l,n. II (bi-ai) i -  i" i=l 

g ( q )  = 

b elsewhere 

This r e s u l t  is deceptively simple. The pdf g(x )  is t h e  

product of m independent uniform d i s t r i b u t i o n s  and a random 

5 



w c t o r  is generated using the equations xi = a.+u.(bi-ai), i=l,m, 1 1  

where u is a usual [O,l] random number. i 

In the program w e  obtain the C = AA’ factorization and 

I calculate A -1 and I A ’ I ,  The algorithm proceeds to calculate 

E ,  y = (A’)-’(x-u) - -  and yay. Then f ( ~ f l i , C )  follows directly. 

This procedure converges slowly in most cases and an effort 

to increase the precision and speed of convergence was attempted 

by “removing the regular part” as generally described in section 2. 

Basically it consisted of expanding the expression 

-1/2 ( x - P )  - -  z - i ( y l )  
e into a Taylor’s series and defining h(5) 

as the first three terms, The arithmetic is formidable and not 

germane to subsequent discussions. Consequently, it will not be 

presented in the text but can be obtained from the appended 

computer program. 

The function h ( E )  described above effectively decreases 

the standard error of the estimate when the integration ranges 

are small, To determine precisely where h(5) fails, i.e., 

where Var(h(x)) > 2 Cov(f(x)) is a formidable task and not 

really necessary. 

perform the calculations to evaluate (5 )  using the standard 

- 
To utilize this approach the  computer must 

/ approach - the difference being the number of random 

number generations required to attain a specified level of the 

standard error of estimation (program input). At each 100 

generations we check both errors and if either is below the 

specified level the computations terminate with the answer, 

standard error and an indication whether or not the regular part 

6 
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was removed being pr inted.  

3,2 E l l i p t i c a l  Regions 

I 

T h i s  por t ion  of t h e  program has m o r e  direct appl icat ions 
1 

t o  meteorological problems as t h e  examples in the next  sec t ion  

w i l l  show. 

The general  procedure is very similar ta the case i n  sec t ion  

3.1, 

over an e l l i p t i c a l  region E having area flab where a and 

b are axis lengths ,  i .e,# w e  desire t o  evaluate 

Assuming we desire to i n t eg ra t e  the b iva r i a t e  normal pdf 

8 = / E \ f k l l g d x .  

Defining g (x )  = l / n a b  we evaluate  - 

( 7 )  

and, analogous t o  ( 6 )  above, obta in  

e = cp nab. 

H e r e ,  as above, the problem is t o  generate a series of 

random vectors  i n  the region being integrated over, 

procedure is t o  assume the ellipse is i n  standard posi t ion,  ire.,  

The general  

< 11, obtain a random point i n  this e l l i p s e  
y2 2 

X 
ES = f ( x , y )  17 + 

a b2 - 
and 

i n  

u1 

Y =  

rotate and/or t r a n s l a t e  it t o  the area E, 

ES 

and u2. The equations x = a( l -2ui)  and 

T h i s  random point  

is obtained by generating two uniform [0,11 numbers 

b -2 1-x2/a ( 1 - 2 3 )  determine a random point on ES, Once 

7 



translated and/or rotated to E the method in 3.1 applies 

except there is no provision for removing the regular part. 

Program input permits considerable flexibility in the 
1 

elliptical parameters required. 

options : 

Specifically, there are two 

1) Inputs include x, y axis lengths, rotation angle 

and center after rotation or 

2)  Input 5 points on the locus of an ellipse 

program determines the ellipse and puts it in standard 

form) 0 

(the 

4. Applications 

This section presents some general numerical results and 

some examples. 

utilizing the data in Catcher (1967)- T h i s  also permits com- 

parisons of our probabilities with those obtained by using the 

Cornel1 Aeronautical Laboratory tables (Groenewoud, et-al-, 1967) 

on bivariate normal integrals over elliptical regions. 

however, first present some computations over rectangular regions. 

Specifically we present program outputs 

We will, 

The accuracy of our computations can be easily ascertained as 

they are merely products of independent standard normal integrals. 

Tables 1-4 present, respectively, the computations for the 

integrals 
fl 

8 



The correct answers, using the normal probabil i ty  tables  i n  

the C.R.C.  Standard Mathematical T a b l e s  (Weast, 1968) are written 

i n  below the value calculated by the program. 

9 



I i TABLE 1 
1 - _ _ _  _.__ . - -  - - 

S.C!?23:: 

1 - - - - _ _ _  
FOR HECTANGULAR RECION~DI+ lE?4SIGiJ  = 1 I 

- --_ 
I THE CORRECT VALUE IS ,341345 



TABLE 2 

X Y V E Q S t  OF A T? ALISP3S t 

THE CORRECT VALUE IS ,46607 ii -- 
B 



;; . 3 3 00 5 1.33300 t : 

- 
FO2 RECT4NCULA2 R E C I O N I D I M E N S I O N  2 3 



TABLE 4 

I 

t MULTIVARIATE NORMAL INTEGRAL 

I -  



The output is set f-expl anatory except for the 

standard error value. 

This auantity is the standard error of the estimated integral 

v a l u e .  In T a b l e  1 the estimated value is ,341236 with a standard 

The value .001 i s  used i n  each case. 

\ error of .DO018 and, consequently, a 95% confidence interval on 

the "true" value of the integral is ,341236 + ,00035 which i s  

observed to contain the true value i n  this case. 
- 

The above paragraph demonstrates the basic statistical 

approach of the Monte Carlo technique, 

parameter in the strictest sense and this estimate has the same 

validity of an estimate for any quantity when many samples 

(likely several thousand in most cases) are involved. Here, 

as in most applications, the well-known mechanism of increasing 

the precision by increasing the sample size and/or decreasing 

the population variance {as the "regular part" does in some 

instances) is working, The confidence placed in these numbers 

should be no more or no less than the confidence placed in the 

results of any carefully designed, controlled and extensive 

sampling scheme, 

We are estimating a 

The next three tables (5-7) present the calculated proba- 

bilities for examples 11, I and J (pp, 25-31} in Crutcher (1967). 

Briefly, the examples are presented below: 

Example H: 24-Hour Displacement of Asiatic East Coast 

Cyclones Originating East of 130° East Longitude. 

14 



Bivariate  Noma1 Parameters 

S = 3.10 
X 

(Units i n  l a t i t u d e )  

- 
y = 4 .6  S = 3.70 Y 

The problem is t o  evaluate  t h e  probabi l i ty  of 

observing a cyclone a f t e r  24-hours i n  a circle 

centered due e a s t  of the  original pos i t i on  a t  

a dis tance  of 8 degrees of l a t i t u d e  with a rad ius  

of 2 degrees, 

Example I: Upper Wind Veloci t ies  f o r  January a t  6 km above 

Greensboro, North Carolina, 

Bivar ia te  Normal Parameters (Units are meters/sec. 

with winds from south and w e s t  pos i t i ve )  
- 
x j"24.04 sx = 13.12 r = -174 

X y  

- 
y = 1.22 S = 12.65 Y 

The problem is to  evaluate  the probabi l i ty  of observ- 

i n g  winds a t  6 km equal to  or  less than 5 meters/sec, 

Example J : 36-Hour Displacement of Tropical Storms, 

Bivariate Normal Parameters (Units are degrees of 

l a t i t u d e )  
- 
x = -2.9 

- 
y = 3.9 

sx = 3.87 

Sy = 2-30  

r = ,581 
xy 

15 



The problem i s  to evaluate the probability of 

observing a storm within 2 degrees latitude of 

a point  (-5.0, 5 . 0 )  from the storm center 36 

hours previously, 

On each table the probability obtained by using the Cornel1 

Tables and the exact calculated probability, furnished by 

Crutcher (1967), are given, 

16 



i THE S T L ' \ ? k 7 3  E 4 7 0 2  IS LESS T H 4 Y  3~0013OCOO 
7 

f THE X A N D  Y A X I S  LENGTHS ARE 2.0000 2.0000 
THE CENTE9 AFTE'I R O T A T I G l t  I S  8 OOOO 0.000U - 

t 

1 
I VALUE USING CORNEU TABLES IS .07733 

r EXACT CALCULATED VALUE IS .07713 



0.00003 
0.00000 

13 6 1 1  997 2.20113 
0 . [I 2 3 9 <I 12.45703 

I IIVEqSE OF A T7AILSPOSf 

c.53599 -3.313106 
-0 . 3 3  1c 8 0.00644 

-- EXACT CALCULATED VALUE IS -01431 

- -- -- I 
18 - --_ 



TABLE 7 

, ' " J i T  IVAR14TE t ~ 3 i i M A L  ISTECRAL 

j :j- 

j '1 
i .i 

-0.04853 .! 0 . 2 8 5 3 6  

1:; FOR Y I V A ' I I A T t  LLLXPTICAL htbIOi'4 

In? .<-!I 4 b ' ~ L t  1 3  U.UrnU 

THE X A%i I  Y A X I S  LENGTHS ARE 2.0000 2.0000 
1 ,  THE CEAJTER P F T E I I  ROTATIBN IS -5 00000  5.0000 

VALUE USING CORNEU TABLES IS -14363 

- EXACT CALCULATED VALUE IS , 14546  

19 
\ 



f -  a 

The Elonte Carlo technique i s  a technique of considerable 

value in evaluating complicated integrals ,  

presented here the reader can readi ly  grasp the importance of a 

proper s e l e c t i o n  of the pdf g ( x ) ,  

grated over can be described mathematically the process i s  readily 

applicable - the form of the integrand presents no problem if 

it can be evaluated accurately, 

From t h e  t w o  cases  

If the region being inte-  
c - 

I 

i 
i- 
I 

il 

i 
i 5 
a 

L 

. 

20 
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Appendix 

I 

!. 

i 

This appendix provides a detailed description of the 

required card inputs to utilize the programs, along with 

appropriate JCL for the computer being utilized. 

are written in Fortran IV. 

The programs 

The changes necessary to adapt the program to a specific 

computer will be the modification to utilize a random number 

generator other than the IBM SSP routine called RANDU and 

assigning the proper logical unit numbers to reader and printer. 

The former can be accomplished by changing Format statement 

number 90 to conform to prescribed starting integer length 

(presently the variable designation is Ix read in I4 format) 

and the latter can be accomplished by changing the R = 2 and 

P = 3 cards at the beginning of the program to designate the 

reader and printer logical numbers. 

- I  

22 



Description - Card Input 

COL . 
CARD 1 1 

2 

3 

4-7 

8-17 

DIMENSION OF INTEGRAL 

0 = RECTANGULAR INTEGRATION, 1 ELLIPSE 

0 = INPUT IS X & Y AXIS LENGTHS, ROTATION ANGLE & 

CENTER AFTER ROTATION 

1 = INPUT IS 5 POINTS ON ELLIPSE 

4 DIGIT RANDOM NUMBER (LAST DIGIT ODD) 

MAXIMUM STD ERROR OF THE MEAN PERMITTED (F10.6 FORMAT) 

CARD 2 VECTOR OF MEANS (MAXIMUM OF 5 )  5~8.3 FORMAT 

CARDS 3 1st CARD FIELD 1 COLS 1-8 
t o  3+r~- i  

2 9-16 

3 17-24 

4 25-32 

5 33-40 

2nd CARD FIELD 1 COLS 1-8 

2 9-16 

3 17-24 

4 25-32 

3rd CARD etc, 

STD DEVIATION OF 1st VARIABLE 

CORRELATION OF 1 s t  & 2nd VARIABLE 

CORRELATION OF 1 s t  6r 3rd VARIABLE 

CORRELATION OF 1st & 4th V W L E  

CORRELATION OF 1st & 5th VARIABLE 

STD DEVIATION OF 2nd VARIABLE 

CORRELATION OF 2nd 61 3rd VARIABLES 

CORRELATION OF 2nd C 4th V-LES 

CORRELATION OF 2nd & 5th VAR- 

. NOTE: THERE WILL BE AS rJlANy CARDS AS THE DIMENSION OF THE INTEGRAL - 
EACH CARD CONTAINING THE STD DEVIATION OF A VARIABLE AND 

CORRELATIONS WITH SUCCEEDING VARIABLES WITH 1 s t  CARD DEVOTED 

TO VARIABLE 1, 2nd CARD TO VARIABLE 2, ETC. 

IF CARD 1, COL 2 = 0 

THE NEXT TWO CARDS CONTAIN THE LIMITS OF INTEGRATION 
23 



c -  Ail, ?17.5? COSTAINihTG THE LOHER LIMITS, THE SECOND CONTAINING THE 

.-.3T" T -..-- 4r. .-A - A A - L L L S .  BOTH CAXDS HAVE 5F8.3 FORMATS. 

_ _  I*- 7 -  l= - *---i-%~ ?'IELD 1 COLS 1-8 LOWER IXTEGRF-TION L I M I T  ON VARIABLE 1 

2 9-16 LOWER INTEGRATION LIMIT ON VARIABLE 2 

3 17-24 LOWER INTEGRATIOf? LIMIT ON VARIABLE 3 

4 25-32 LOWER INTEGRATION LIMIT ON VRRIABLE 4 

5 33-40 LOWER INTEGRATION LIMIT ON VARIABLE 5 

2x2 i X ? 3  FIELD 1 COLS 1-8 UPPER INTEGRATION LIMIT ON VARIABLE 1 

2 9-16 UPPER INTEGRATION LIMIT ON VARIABLE 2 

3 17-24 UPPER INTEGRATION LIMIT ON VAFtIABLE 3 

4 25-32 UPPER INTEGPATION LIMIT ON VARIABLE 4 

5 33-40 UPPER INTEGRATION L I M I T  ON VARIABLE 5 

IF CARD I, COL 2 = 1 

THE NEXT CARD CONTAINS ELLIPSE INFORMATION 

IF CARD 1, COL 3 = 0 

FIELD 1 COLS 1-10 ROTATION ANGLE I N  RADIANS F10.3 FORMAT 

2 11-20 X AXIS LENGTH (in regular position) F10.3 FORMAT 

3 21-30 Y AXIS LENGTH (in regular position) F10.3 FORMAT 

4 31-40 X COORDINATE OF CENTER F10.3 FORMAT 

5 41-50 Y COORDINATE OF CENTER F10.3 FORMAT 

IF CARD I, COL 3 = 1 

F I E L D  1 COLS 1-6 X COORDINATE OF 1st POINT 

2 7-12 Y COORDINATE OF 1st POINT F6.2 FORMAT 

3 13-18 X COORDINATE OF 2nd POINT F6.2 FORMAT 

4 19-24 Y COORDINATE OF 2nd POINT F6.2 FORMAT 

5 25-30 X COORDINATE OF 3rd POINT F6.2 FORMAT 

24 



6 31-36 Y COORDINATE OF 3rd POINT F6.2 FORMAT 
I 
I 7 37-42 X COORDINATE OF 4th POINT F6.2 FORMAT 

8 43-48 Y CO0PJ)INATE OF 4th POINT F6.2 FORMAT 

9 49-54 X COORDINATE OF 5th POI" F6.2 FORMAT 

j 
~ 

10 55-60 Y COORDINATE OF 5th POINT F6.2 FORMAT 

I 

25 





L 

C INVERT A 

If[IERl 19r21r20 

GO TO 2: 
f 19 WRITE(3994) 

IF(1ER) 7 3 9 2 5  9 2 4  

GO TO 25 
- .  - 23 WRITE(3r94) 

24 WRITE(3r95) 
25 WRITEI3r99) 

- .  

-_ . 
C CALCULATE C3PiSfANT C 

PROD= t o  
DO 30 IrlrN 

0 PROD=PROD*F(I,I) 
PPROD=PSOD++2 
C=C (6.293185337)**N*PPROD)**(-a5) - 
IF(Y-2) 37e31r37 

C 
C IF KODE l r  THIS IS AN ELLIPSE 
C 

! 31 IF(KODE1 32032r200 
4 c 
I: C CALCULATE QUAkTITY Q 
;) c 

32 WRITE(3vlll)N .I : a 111 FOR?+?ATIZlX,~FOR RECTANGULAR AREAID~MENSION ='BIZ/) 
27 - 

i 





6 5  Q=Q+C+( fS7+TS3+tZQ)  
C i 

! 

C CALCULATE C' 

- 5 1  X (  I l=YFL 
DO 52  I = l r N  

52 Y ~ I ) = A ( I ) + X ( I ) * ( B ( I ~ - A ( f ) )  

C CALClJLAfE f AND C 
- c  

c c  

i 5 3  
f=l. 





_ _  GO T 3  213 
211  REA3(2,i01) THETAvAXISvPTS 
213 NRITE(3+132) THETA9AXISrPTS 

Cr3o141592653+C+AXIS(l)*AXIS(2) 

CALL R A N D U ( I X ~ I Y I Y F L I  

I SF=SQST(VARl/NT) 
1 210 IF(SF-ERROR) 206r2059205  

205 NT=Nf+100  
GO TO 201 I 

t -  - 
206 WRITE(3rl03)FM,SF . 

300 GO TO 1 - -_ 
1 - 5 6 7 6 9  STOP 
t END 

I 

31 
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I 
I '  
f 

1 

t ~ 

I 
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I 

r 
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GO TO 140 

I 

-sr 

36 



I ?  
1 

k 

1 -  i E N 3= <-1 

T G L = A E ! S ( f O S * A ( K P I V ) )  
C C A L C U L A T E  TSLERANCE 

.$ C START FACTORIZATION LOOP OVER K-TH ROW 
L i  DO 11 I = K , N  

DSLi*.”=O. 
IF(LEI\;D) 294.2 _ _  

I f  
c 

- 
C S T A R T  IhVEQ LOOP - 

L 2 DO 3 LZlrLEND 
LANF=KPIV-L 

i L I N D t I N D - L  
1 3 DSUY=DSUY+A(LANF)wA(L1ND)  
t 
I -- _ _  ._ - .- . - C END O f  INNE? LOOP 

* !  I C TRANSfORY ELEMEhT A ( I N D )  ._  

. I  4 DSUM=A(IND!-DSUM 
=I  IF( I - K )  lot5110 

e 

- *  C TEST FOR NEGATIVE P I V O T  ELEMENT AND FOR LOSS O f  SIGNIFICANCE 

D P I  V=SQRf  I DSUM 1 
A ( K P I  V 1 =DP I V 
DP I V= 1 1 DP I V 
GO TO 11 

>/ L. I $  
I 3 

. -  

c CALCULATE-TERYS I N  R O ~  I I . *  

‘ I  19 A ( I N D I = D S U M * D P I V  
I 

11 
C END O F  DIAGONAL LOOP 

I ND= I ND+ I 

R E T ~ J R N  

I 





I END . - . - 


